Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Parameter Estimation by Simulated Annealing for Models of Whole-Blood Infection Assays with Candida Albicans

Teresa Lehnert and Marc Thilo Figge

Research Group Applied Systems Biology Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Friedrich Schiller University Jena, Jena, Germany

Summary

The precise estimation of a priori unknown model parameters reveals insight into the relative importance of individual processes in complex biological systems. We simulate time-resolved data obtained from human whole blood infection assays with *Candida albicans* by numerically solving a mathematical model in terms of coupled differential equations. The optimal set of model parameters is obtained from a self-written algorithm that performs Simulated Annealing based on the Metropolis Monte Carlo scheme. The algorithm randomly explores the space of rate parameters and searches for a solution with minimal weighted Least Squared Error (wLSE) compared to experimental data. Two different procedures of error evaluation have been implemented: the individual procedure and the joint procedure. The mathematical model aims at elucidating the relative importance of different routes in the immune response against *C. albicans*.

Method		Experimental Data		
Modeling using Differential Equations			Whole blood infection assays of <i>C. albicans</i> deliver time resolved	
Model:	Legend:	Differential Equation System	data of immune defense by monocytes and granulocytes as well as the complement system.	
	Y living, free <i>C. albicans</i> yeast cell	$\dot{Y} = -\phi_M \cdot Y(t) \cdot M(t) - \phi_G \cdot Y(t) \cdot G(t) - \kappa \cdot Y(t)$	Experimental Way: Inoculation of <i>C albicans</i> into human blood probes at 10 different	
	M monocytes without a yeast cell	$\dot{M} = -\phi_M \cdot Y(t) \cdot M(t) + \kappa_M \cdot M_Y(t)$	time points, where interesting cell types were measured using <i>Facs</i> (fluorescence activated cell sorting) and Killing plates. Observed experimental data are displayed in Figure 3.	
	G granulocytes without a yeast cell	$\dot{G} = -\phi_G \cdot Y(t) \cdot G(t) + \kappa_G \cdot G_Y(t)$		
	M _Y monocytes which phagocy- tosed a yeast cell	$\dot{M}_Y = -\kappa_M \cdot M_Y(t) + \phi_M \cdot Y(t) \cdot M(t)$	Method Measured cell types	
	G _Y granulocytes which phago- cytosed a yeast cell	$\dot{G}_Y = -\kappa_G \cdot G_Y(t) + \phi_G \cdot Y(t) \cdot G(t)$	Facs Y, M, G, M _K , G _K	
	Y_K killed yeast cells	$\dot{Y_K} = \kappa \cdot Y(t) + \kappa_M \cdot M_Y(t) + \kappa_G \cdot G_Y(t)$	Killing plates $ Y_K $	
Figure 1: Depiction of processes describing the immune defense against <i>C albicans</i> in human blood		A priori unknown parameter $\kappa, \kappa_M, \kappa_G, \phi_M, \phi_G$	Table 1: Experimental methods and measured cell types. Abbreviations are explained in the Method part.	
			Regulte	

Parameter Estimation using Simulated Annealing

We applied the self-written Metropolis Monte Carlo algorithm to estimate the a priori unknown parameters of the mathematical model which describes the human immune defense against C. albicans.

Algorithm Settings • Joint procedure para 15 % parameter variation • without individual penalty ν • 4000 fitting steps • 10 runs

Resulting Parameter Values

ameter	mean	sd
$\phi_M \ \phi_G \ \kappa_M \ \kappa_G$	0.016 $\mu l/s$ 0.015 $\mu l/s$ 0.38 1/s 0.12 1/s	$\begin{array}{c} 26.5 \ \% \\ 2.9 \ \% \\ 25.0 \ \% \\ 2.9 \ \% \\ 0 \ 0 \ \% \end{array}$
κ	$0.0 \ 1/S$	0.0 %

 Table 2: Resulting values of a

priori unknown parameter.

Resulting Curves

0 60 120 180 240

time [min]

0 60 120 180

time [min]

240

Figure 2: Scheme of the self-written Metropolis Monte Carlo algorithm which performs Simulated Annealing. The algorithm can be described in four steps, where step 2-4 were repeated corresponding the number of fitting steps <i>f</i> . Equations applied in the algorithm are listed in the blue box on the right.	Figure 3: Resulting experimental and simulated data generated using parameter values which were estimated applying the presented algorithm. Dashed red lines denote experimental data and continuous red lines represent simulated data.	
Outlook In future, we will extend the model for including the impact of antimicrobial factors generated by granulocytes with regard to activation of the complement system.	Acknowledgement Experimental data were generated and provided by Dr. Kerstin Hünniger and Prof. Dr. Oliver Kurzai, <i>ZIK Septomics, Research</i> <i>Group Fungal Septomics, c/o Leibniz Institute for Natural Prod</i> -	
Contact: teresa.lehnert@hki-jena.de	uct Research and Infection Biology - Hans Knoll Institute.	