Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute

Comparative Study of Phagocytosis-assays for Lichtheimia Species by Automated Analysis of Fluorescence Microscopy Images

Kaswara Kraibooj^{1,2}, Hea-Reung Park^{2,3}, Hans-Martin Dahse⁴, Christine Sherka⁴, Kerstin Voigt^{2,3} and Marc Thilo Figge^{1,2}

[1] Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute [2] Friedrich Schiller University Jena, Germany

[3] Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute [4] Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute

- Motivation: the fungus Lichtheimia corymbifera can cause life-threatening diseases by attacking the human lung.
- Goal: understanding the mechanisms underlying pathogenicity of L. corymbifera.
- Method: automated analysis of 350 fluorescence microscopy images. The images depict the interaction between *L. corymbifera* and alveolar macrophages by differential staining. A virulent (JMRC:FSU:9682) and an attenuated (JMRC:FSU:10164) strain of this fungus are studied under three conditions: resting, swollen and opsonized.

strain N_{tot} FP/FP rate (%) FN/FN rate (%) TP S (%) P (%)

9682 2130	87/ 4.08	80/ 3.75	2043	96.37	95.91
1016 1653	75/ 4.54	61/ 3.7	1578	96.28	95.46
Sum 3787	162/ 4.28	141/ 3.73	3621	96.25	95.72

 N_{tot} = the total number of spores, TP (*true positive*) = number of spores which are correctly segmented and classified, FP (false positive) = number of image objects which are incorrectly segmented or classified as spores (artifacts or oversegmentation), FN (*false negative*) = number of spores which are incorrectly not recognized

Methods

. Image analysis [1]

(a) Pre-processing ~> contrast enhacement and noise reduction (b) Segmentation ~> separating regions of interest (ROIs) from background (c) Classification \rightsquigarrow identify ROIs by features, e.g. size, color, morphology.

2. Validation based on a manual analysis of a subset of images

- Sensitivity
- Precision

3. Characteristic quantities

- Phagocytosis ratio: $p_r = \frac{N_{pha}}{N_{pha}+N_{adh}}$; N_{pha} = number of phagozytozed spores, N_{adh} = number of adherent spores • Phagocyte-adhesion ratio: $a_p = \frac{N_{adh}}{N_{adh}+N_{non}}$; N_{non} = number of nonphagocytozed spores • Fungal aggregation ratio: $a_f = \frac{N_{agg}}{N_{adb}+N_{non}}$; N_{agg} = number of aggregated spores

Results

- 4. Statistical analysis and significance tests
- 5. **Biological interpretation**

Image Analysis

before after

• Parameters: area, intensity, asymmetry and position of image objects

• A significant increase of phagocytosis ratio of the virulent strain in comparison to the attenuated one

Outlook

- Quantitative answers to biological questions by an image-based systems biology approach
- High-troughput screening for different strains to perform comparative studies in an automated fashion

Contact: kaswara.kraibooj@hki-jena.de

References

[1] Mech F, Thywißen A, Guthke R, Brakhage AA, Figge MT. Automated image analysis of the host-pathogen interaction between phagocytes and Aspergillus fumigatus. PLOS ONE 2011; 6: e19591.

Acknowledgements

We are gratefull to Franziska Mech, Zeinab Mokhtari and Carl-Magnus Svensson for valuable discussions. This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) within CRC/TR 124 FungiNet (Project B4).

