Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute

Automated image analysis of the host-pathogen interaction between immune cells and human-pathogenic fungi

Kaswara Kraibooj ^{1,2}, Hea-Reung Park ^{2,3}, Hans-Martin Dahse ⁴, Christine Skerka ^{2,4}, Hanno Schöler 2,5 , Kerstin Voigt 2,3 , Axel Brakhage 2,5 and Marc Thilo Figge 1,2

¹Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany ²Friedrich Schiller University Jena, Jena, Germany ³Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany ⁴Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany ⁵Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

- Motivation: Immunocompromised patients are susceptible opportunistic infections of human-pathogenic fungi. for
- Goal: Quantification of host-pathogen interactions in comparative studies of different mutants.

• Methods:

Raw data

phagocytosis ratio [%]

(b)

Processed data

Figure 2 Raw data: Phagocytosis assay of *Lichtheimia corymbifera* by alveolar macrophages. Different layers are obtained using differential staining : (a) all fungal spores (green), (b) non-phagocytosed spores (blue), (c) macrophages (red) and (d) overlay. Processed data: Result of the automated image analysis separately applied on the RGB layers, i.e. (a) all spores with purple segmentation lines. (b) non-phagocytosed spores with yellow segmentation lines and (c) macrophages with white segmentation lines, and the overlay (d) adherent spores with cyan segmentation lines. Detecting spores reached sensitivity and precision values \geq 95%.

significance map

Figure 1 General schematic representation of the iterative cycle between experiment (green) and theory (blue).

2. Example: Phagocytosis Assay

- An automated analysis of 360 fluorescence microscopy images is performed [1]. The analysis is based on the method applied by Mech *et al.* [2]. The images depict the interaction between Lichtheimia corymbifera and murine alveolar macrophages. A virulent (JMRC:FSÚ:9682) and an attenuated (JMRC:FSU:10164) strain of this fungus are studied under three conditions: resting, swollen and opsonized spores.
- The algorithm is developed using the software environment Definiens[®].
- We computed characteristic quantities:
- -Phagocytosis ratio: $p_r = \frac{N_{pha}}{N_{pha} + N_{adh}}$; N_{pha} = number of phagocytosed spores, N_{adh} = number of adherent spores -Phagocyte-adhesion ratio: $a_p = \frac{N_{adh}}{N_{adh}+N_{non}}$; N_{non} = number of nonphagocytosed spores

Figure 3 (a) Phagocytosis ratio for Lichtheimia corymbifera virulent strain JMRC:FSU:9682 (red) and attenuated Lichtheimia corymbifera strain JMRC:FSU 10164 (blue) under the three conditions: resting, swollen and opsonized spores. (b) Significance map for Phagocytosis ratio for both strains and the three conditions as obtained from the Wilcoxon rank-sum test with color coding according to P-value: black for P-value ≥ 0.05 , red for P-value < 0.05, green for P-value < 0.01, blue for P-value < 0.001. (c) The same as in (a) but for the adhesion ratio. (d) The same as in (b) but for the adhesion ratio.

5. Discussion

4. Results

(a)

- We found a significant increase of the phagocytosis ratio for the virulent strain of *Lichtheimia corymbifera* in comparison with the attenuated one. • The virulent strain might survive in alveolar macrophages and use the phagocytes as vehicles for dissemination via the blood stream causing systemic infections.

Outlook

- Quantitative answers to biological questions by an image-based systems biology approach
- High-throughput screening for different strains to perform comparative studies in an automated fashion

References

[1] Kraibooj K, Park H-R, Dahse H-M, Skerka C, Voigt K and Figge MT (2014) Virulent strain of Lichtheimia corymbifera shows increased phagocytosis by macrophages as revealed by automated microscopy image analysis. Mycoses 2014.

[2] Mech F, Thywißen A, Guthke R, Brakhage AA, Figge MT. Automated image analysis of the host-pathogen interaction between phagocytes and *Aspergillus fumigatus*. PLOS ONE 2011; 6: e19591.

Acknowledgements

Contact: kaswara.kraibooj@hki-jena.de

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) within CRC/TR 124 FungiNet (Project B4).

