Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute **Agent-based Modeling on Cellular and Molecular Scales**

Sandra Timme^{1,4}, Johannes Pollmächer^{1,4}, Teresa Lehnert^{1,4}, Anna Medyukhina¹, Sören Totzauer^{1,4},

Kerstin Hünniger^{2,4}, Denise Buhlmann^{3,4}, Christine Skerka^{3,4}, Oliver Kurzai^{2,4} and Marc Thilo Figge^{1,4}

¹Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute ²Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute ³Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute ⁴Friedrich Schiller University Jena, Jena, Germany

Agent-based Modeling

Biological systems typically show stochastic behavior as a consequence of single entities, like cells and molecules, acting and interacting individually. Their behavior depends mainly on their lifetime, position in space and activation status. Agent-based modeling allows for realistic simulation of such systems. Here, each entity (e.g. molecule or cell) is represented by one virtual object in the computer. Although this approach is memory intensive and computationally demanding it has the advantages of a low abstraction level and emergent bottom-up system behaviour in contrast, to differential equation models. e.g. We use agent-based modeling to model distinct interactions of human immune cells with different molecules and cellular species, such as the pathogenic fungi Aspergillus fumigatus and Candida albicans. Our predictions yield starting points for biological experiments in the interative cycle of systems biology.

Environment

represents a defined space of the model

Properties

Morphology:

Agents

 single entities (e.g. cells and molecules) • present in the simulation environment • act according to specific rules

Properties

Molecular level (agent = molecule)

Cellular level (agent = cell)

Morphology	aggregated morphologies	spheric morphologies
Migration behavior	random walk	migration based on distribu- tions of speed and direction
 Behavioral rules: single agent rules (action event) multi-agent rules (interaction events) 	binding, dissociation	killing, phagocytosis, chemokine uptake
Computational realisation: Simulation dynamics	next-reaction dynamics random selection dynamics	random selection dynamics

Receptor-Ligand Model

Introduction:

Molecular interactions between cellular receptors and soluble ligands lead to activating pattern formation on immune cells, e.g. immunological synapse on B and T-cells. The role of binding kinetics, spatial aspects of binding sites and multiple binding sites are important aspects in the formation of specific molecular patterns.

Model:

A. fumigatus Infection Model in Human Alveoli

Introduction:

Alveoli are small gas-exchange units of the lung. They are the portal for environmental threats like the opportunistic human pathogenic fungus A. fumigatus. We model and simulate the early stages of A. fumigatus infection in human alveoli under physiological conditions.

Model: Agents:

3D Virtual Infection Model with *C. albicans*

Introduction:

Cellular interaction between the opportunistic fungal pathogen C. albicans and human immune cells is simulated using current insights from experimental and *in silico* wholeblood infection assays [1]. The spatial resolution enables to simulate and predict the unknown cellular migration behavior.

Input:

• receptor and ligand sizes, diffusion concentrations. constants (from literature) • 2D-RL binding kinetics

Output:

- binding dynamics (timeevolution of complex and cluster formation)
- molecule distribution (cluster size and location)

(spherical morphology) Receptors R (two-arm morphology) Complexes LR (combined morphology)

Interactions: Binding and dissociation via multiple binding domains on receptors and ligands

> Automated image analysis of fluorescence microscopy imaging of B cells

Readout:

- (1) Detecting size and area of • B cell receptor (BCR) cluster (red) • Complement Receptor Type 2 (CR2) clus-
- ter (green) • overlay (yellow) of BCR and CR2
- (2) Calculating the number of colocalization of CR2 and BCR

• investigation of multiple binding sites

Results:

• randomly migrating AM can not clear the infection before

Aim:

• investigation of cell migration/movement

- investigation of BCR pattern formation mechanism during treatment of B cell inhibitory ligand
- image analysis results are used for model validation
- germination (\sim 6 hrs)
- AM require chemotactic cues to find the pathogen before germination
- respiration induces only small changes in the FPT

• integration of molecule diffusion to investigate intercellular signalling

References

[1] Hünniger and Lehnert et al. PLOS Comp. *Biol.* **10**(2): e1003479 ,2014

Contact:

sandra.timme@hki-jena.de johannes.pollmaecher@hki-jena.de teresa.lehnert@hki-jena.de

Acknowledgements

This work was financially supported by the excellence graduate school Jena School for Microbial Communication (JSMC) and the CRC/TR124 FungiNet, Project B4, that are both funded by the Deutsche Forschungsgemeinschaft (DFG).

