Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute

Virtual Infection Models of *Candida albicans* in Whole Blood

Teresa Lehnert^{1,2}, Sandra Timme^{1,2}, Kerstin Hünniger^{2,3}, Silvia Slesiona^{2,4}, Ilse D. Jacobsen^{2,4}, Oliver Kurzai^{2,3}, Marc Thilo Figge^{1,2}

¹ Applied Systems Biology ² Friedrich Schiller University Jena ³ Fungal Septomics, Septomics Research Center ⁴ Microbial Immunity

Immune Defense against Candida albicans in Human Whole-blood

The opportunistic human fungal pathogen *Candida albicans* causes severe systemic infections such as bloodstream infections and is becoming an increasing clinical problem associated with a high mortality rate.

We quantified the different routes of immune response to *C. albicans* in human blood by developing a state-based virtual infection model that simulates the host-pathogen interaction using time resolved data of whole-blood infection assays. Furthermore, we generated a spatial agent-based model that enables to investigate the migration behaviour of the host immune cells that respond to *C. albicans* in human whole-blood. This close-to-reality model yield predictions on currently not experimental accessible spatial motility parameter and enables further investigation of spatial dependent *C. albicans* killing mechanisms in human blood.

Whole-blood infection experiments with *C. albicans*:

Agent-based Virtual Infection Model

Transformation of transition rates

Uniform Rates:

• rates of space-independent events

• $\rho, \kappa_G, \kappa_M, \kappa_{EK}$

• space-independent events should occur with equal rate in SBM and ABM $r_{ABM} \stackrel{!}{=} r_{SBM}$

Estimation of movement rates

ABM computational very expensive
sparse approaches for parameter estimation
Grid search approach with refinement levels

Space-dependent Rates:

- rates of space-dependent events
- $\Phi_G, \Phi_{G*}, \Phi_M \rightarrow \mathsf{phagocytosis}$ depends on cell contacts
- space-dependent event should occur with equal probability in SBM and ABM

$$P_{ABM} \stackrel{!}{=} P_{SBM} \longrightarrow r_{ABM} = \frac{P_{SBM}}{\Delta t_{ABM}}$$

Results

• Transformation of transition rates and estimation movement rates enable an accurate fit to experimental data.

• Comparison of immune cell migration behaviour reveals that PMN are faster than monocytes.

Acknowledgement

This work was financially supported by the excellence graduate school Jena School for Microbial Communication (JSMC) and the CRC/TR124 FungiNet, Project B4, that are both funded by the Deutsche Forschungsgemeinschaft (DFG).

Contact: sandra.timme@hki-jena.de, teresa.lehnert@hki-jena.de

Outlook

In the future, we will investigate the spatial diffusion of antimicrobial factors in the agent-based model, by implementation of diffusing molecules that are released by immune cells. Furthermore, we are very interested in the identification of the escape mechanism of *C. albicans* in human as well as murine blood.