Combined [¹⁸F]-Fluoride Imaging in Experimental Arthritis

Bianca Hoffmann^{1,2,3}, Carl-Magnus Svensson², Maria Straßburger⁴, Björn Gebser¹, Ingo Irmler⁵, Thomas Kamradt⁵, Hans Peter Saluz^{1,3} and Marc Thilo Figge^{2,3}

Background

Rheumatoid Arthritis (RA)

- one of the most common autoimmune diseases
- leads to joint swelling, bone erosion,

Results		
	∞ – arthri	tic art
PET imaging results: • increased uptake of [¹⁸ F in arthritic animals	=]-fluoride	

loss of joint function

Experimental Arthritis

- used to study RA and arthritic processes
- glucose-6-phosphate isomerase(G6PI) induced [1]

Longitudinal, in vivo Imaging

combined positron emission tomography/computed tomography

Methods

Prepare volumes of interest (VOIs)
 extract parts of image stack

- distribution of the tracer is visualized by PET/CT image fusion
- accumulates predominantly in metatarsophalangeal and tarsocrural joint regions

CT imaging results:

arthritic animals show increased bone roughness in hind paws
already at day 10 roughness is significantly increased

• roughness is declining in late remitting phase of experimental arthritis

that contain the hind paws

- <u>3. Calculate local roughness [3]</u>
 for each facet normal
 - average angle between facet normals

triangulated surface mesh

• marching cubes algorithm [2]

2. Reconstruct surface

- 4. Calculate global roughness [3]
 - composite histogram
 - sum of frequencies of angles above threshold

- variation of roughness radius r reveals differences between outer and inner cortical bone surface
- at outer surface roughness appears on a smaller spatial scale with a turnover to larger spatial scales at day 35

Conclusion

- combined PET/CT imaging allows longitudinal, in vivo studies
- [¹⁸F]-fluoride is well suited to quantify pathological bone metabolism
- fully automated CT image analysis pipeline for roughness evaluation
- very sensitive to early anatomical changes of the bones
- revealed different dynamics of bone erosion at periosteal and

- PET image analysis
 manually place regions of interest around paws
- calculate standard uptake value (SUV)

endosteal sites of the cortical bone

This work was funded by the Bundesministerium für Bildung und Forschung (grant number: 0316040A)

¹ Cell and Molecular Biology, Hans Knöll Institute, Jena, Germany

- ² Applied Systems Biology, Hans Knöll Institute, Jena, Germany
- ³ Friedrich Schiller University, Jena, Germany
- ⁴ Molecular and Applied Microbiology, Hans Knöll Institute, Jena, Germany
- ⁵ Institute of Immunology, Jena, Germany

Contact: bianca.hoffmann@leibniz-hki.de

References:

 Schubert *et al.*, (2004) Immunization with Glucose-6-Phosphate Isomerase Induces T Cell-Dependent Peripheral Polyarthritis in Genetically Unaltered Mice, *J Immunol* 172(7), 4503–4509.
 Lorensen and Cline, (1987) Marching cubes: A high resolution 3D surface construction algorithm, *ACM Siggraph Comput Graph* 21(4), 163-169.
 Silva *et al.*, (2006) Application of surface roughness analysis on micro-computed tomographic images

of bone erosion: examples using a rodent model of rheumatoid arthritis., *Mol Imaging* 5(4), 475–84.