GEFÖRDERT DURCH BLOODi Infecto **Iptics**

Automated tracking and characterization of cell dynamics for classifier models

Belyaev I., Al Zaben N., Medyukhina A., Figge M. T.

Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute

Project Aim

Automated characterization of cell tracks based on

interpretable features, in order to construct classifier models based on dynamic cell properties.

State of the art work

Cell track description

Cell track analysis

Basic types

- Highly localized migration (HL) max displacement (D_{max}) within the course of time less than cell diameter d.
- High-speed linear migration (HsL) track speed of cell not less than one cell diameter per minute; it is possible to fit the track by a line without knots.
- High-speed persistent migration (HsP) speed of cell not less than one cell diameter per minute, direction of migration fairly the same within the course of time.

 $D_{max} < d$

 $P(S_i | S_i \in \{0.43, 1, 2, 3\}) = 1$

 $P(S_i | S_i \in \{0.43, 1, 2, 3\}) = 1$ *Cr*<0.1

Experiment: polymorphonuclear leukocytes, 9 populations in different conditions¹

¹(data from H. Schoeler, MAM HKI)

Network

Create and analyze a classifier model, implement tracklet analysis.

Test on various data sets: different cell types in different conditions and different imaging parameters (WP 1-3, 9). Provide results for WP 1-3.

Combine this method with shape descriptors (WP12). Adopt the method to 3D track data, analyze 3D track data (WP 8).