Mathematical model of the factor H mediated self and non-self discrimination by the complement system

Alexander Tille^{1,3}, Teresa Lehnert¹, Nadine Reiher^{2,3}, Peter Zipfel^{2,3} and Marc Thilo Figge^{1,3}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany ² Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany ³ Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany

complement system

- recognization and opsonization of invading microorganisms
- consists of a set of biochemical reactions on distinct pathways
- host cell protection with a tight regulation mechanism

aims of the model

key molecules

- **opsonin C3b:** forms a molecular complex, that activates new C3b molecules
- **regulator factor H (fH):** plasma protein that can be bound to surfaces
 - accelerates decay of C3b amplification complex
 - mediates C3b degradation

reaction scheme of simplified mathematical model

- quantify reaction rates by fitting model to experimental data
- determine driving processes of the opsonization mechanism
- predict opsonization based on concentration of surface-bound factor H

mathematical model

- dynamics of protein concentration with ordinary differential equations
- simplified dynamic system: "as simple as possible, but not simpler"
 - using quasi steady state approximation
 - introducing effective rates: combination of unkown parameters

$$\frac{d}{dt}C3b^{f} = r_{act} + r_{amp}(fH^{s}, C3b^{s}) \cdot S_{2D \to 3D} \cdot C3b^{s}$$
$$- r_{ops} \cdot S_{2D \to 3D} \cdot B^{*}(fH^{s}, C3b^{s}) \cdot C3b^{f} - r_{stab} \cdot C3b^{f} - r_{inhib}^{f} \cdot C3b^{s}$$
$$\frac{d}{dt}C3b^{s} = r_{ops} \cdot B^{*}(fH^{s}, C3b^{s}) \cdot C3b^{f} - r_{inhib}^{s}(fH^{s}, C3b^{s}) \cdot C3b^{s}$$
$$\frac{d}{dt}iC3b^{s} = r_{inhib}^{s}(fH^{s}, C3b^{s}) \cdot C3b^{s} - \mu_{iC3b^{s}} \cdot iC3b^{s}$$

capturing spatial information of the model

- a compartment model describes the molecule concentrations correctly

biological system

compartment model

results

- steady state analysis for varying parameters
- change of surface bound fH^s reveals sharp transition between two regimes
 - self regime: neglectable opsonization

- non-self regime: massive opsonization, caused by an weakened regulation

experimental validation

in cooperation with Infection Biology Group, N.Reiher and P. Zipfel

idea:

- tuning surface-bound fH concentration of a model particle and measure C3b concentration on the surface

current experiments:

summary

- model predicts opsonization level of a cell-based on the concentration of surface-bound fH
- simplified model is able to reproduce biological system qualitatively
- dominating processes of self and non-self regimes can be identified

perspective

- quantification of effective rates by model calibration with experimental data
- coat latex beads with different concentrations of fH binding molecules

future experiments:

- investigate different mutants of *Candida albicans*, that express different amounts of fH binding molecules
- add a phagocytosis model/experiments
- investigate pathogens that are able to hide from complement (*C. albicans*)
- extend the model by more proteins to create a more realistic cell

CONTACT Alexander.Tille@hki-jena.de Research Group Applied Systems Biology

