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Complement system Key molecules

- recognization and opsonization of invading microorganisms opsonin C3b: -forms a molecular complex, that activates new C3b molecules

- consists of a set of biochemical reactions on distinct pathways regulator factor H (fH): - plasma protein that can be bound to surfaces

- host cell protection with a tight regulation mechanism - accelerates decay of C3b amplification complex

Aims of the model - mediates C3b degradation
- quantification of the opsonization process Reaction scheme of simplified mathematical model
- determination of driving processes of the opsonization mechanism
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of apoptotic cells [3,4] representation of the opsonization process
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