Quantification of factor H mediated self and non-self discrimination by mathematical modeling

Alexander Tille^{1,2}, Teresa Lehnert¹ and Marc Thilo Figge^{1,2}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany ² Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany

Complement system

- recognization and opsonization of invading microorganisms
- consists of a set of biochemical reactions on distinct pathways
- host cell protection with a tight regulation mechanism

Aims of the model

- quantification of the opsonization process
- determination of driving processes of the opsonization mechanism
- prediction of opsonization based on concentration of surface-bound factor H

Key molecules

opsonin C3b: - forms a molecular complex, that activates new C3b molecules

- **regulator factor H (fH):** plasma protein that can be bound to surfaces
 - accelerates decay of C3b amplification complex
 - mediates C3b degradation

Reaction scheme of simplified mathematical model

Mathematical model

- simplified dynamic system: "as simple as possible, but not simpler"
- evaluating a single cell
- combining dynamics of the fluid phase (PDE) with dynamics of the cell surface (ODE

$$C3b^{f}(r)^{*} = \frac{\left(r_{amp}(fH^{s}) \cdot C3b^{s} - r_{ops} \cdot B_{C3b,free} \cdot C3b^{f}(R)\right) \cdot R^{2}}{D_{C3b} + R\sqrt{D_{C3b}\left(r_{inhib}^{f} + r_{stab}^{f}\right)}} \frac{\left(-\frac{r-R}{\sqrt{D_{C3b}/(r_{inhib}^{f} + r_{stab}^{f})}\right)}{r} + \frac{A}{r_{inhib}^{f} + r_{stab}^{f}}$$

$$\frac{d}{dt}C3b^{s} = r_{ops} \cdot B_{C3b,free}(C3b^{s}, iC3b^{s}) \cdot C3b^{f}(R)^{*} - r_{inhib}^{s}(fH^{s}) \cdot C3b^{s}$$

$$\frac{d}{dt}iC3b^{s} = r_{inhib}^{s}(fH^{s}) \cdot C3b^{s} - r_{dec} \cdot iC3b^{s}$$

$$r \dots \text{ distance to cell center } r \leq R$$
see reaction scheme for definition of parameter

Results

Steady state on cell surface

- analytical solution predicts two distinct regimes:
 - self regime

Driving processes and sensitivity analysis

- r_{inhib}^{s} and r_{amp} determine fH_{crit}^{s}
- **non-self regime** is sensitive to r^s_{inhib} and r_{dec} , only molecule proportion is changed

non-self regime

- regimes are seperated by sharp transition region, marked by fH_{crit}^{s}

Dynamics on cell surface

- **non-self regime** with sigmoidal shaped opsonization dynamics [1]
- ratio lag : log phase is 3 : 1
- time scale between 10 and 200 min
- **self regime** characterized by very long opsonization processes above 10 hours

Biological interpretation

- **non-self regime** can be divided into two sub-regimes: pathogens and evasive pathogens
- evasive pathogens show an $iC3b^s$ to $C3b^s$ ratio of 30% up to 70% [2]
- self regime with $iC3b^s$ to $C3b^s$

- **transition region** sensitive to r_{inhib}^{s} and r_{amp} , highest sensitvities
- **self regime** is sensitive to r^s_{inhib} , r_{dec} and A
- fluid phase activation influences only the steady state of the self regime

Fluid phase concentration profile

- **non-self regime** with increased $C3b^{f}(R)^{*}$ concentration of up to six orders of magnitude compared to equilibrium
- self regime with decreased $C3b^{f}(R)^{*}$ concentration compared to equilibrium
- equilibrium concentration reached within less than $0.5 \mu m$ from the cell surface
- encorporating PDE is essential in order to calculate the molecular dynamics on the surface correctly

Summary

- model quantifies opsonization level of a cell based on the concentration of surface-bound fH
- fast opsonization dynamics in the non-self regime and slow dynamics in the self regime

- model is able to reproduce biological system qualitatively
- dominating processes of self and non-self regimes can be identified
- encorporation of spatial inhomogeneities using PDEs is important for a correct representation of the opsonization process

[1] Pangburn M. *et al.*, J. of Immunology (1983) [2] Newman S. and Mikus L., J. Exp. Med. 161(1985) [3] Trouw L. *et al.*, Molecular Immunology (2008) [4] Takizawa F., FEBS Letters (1996)

CONTACT Alexander.Tille@hki-jena.de Research Group Applied Systems Biology

