LEBN IZHKI

Comparative simulations of fungal infection dynamics in the human and murine lung

Christoph Saffer^{1,2}, Sandra Timme¹, Marc Thilo Figge^{1,3}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
 ² Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
 ³ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany

Virtual infection model of Aspergillus fumigatus in the human and murine alveolus

- Hybrid modeling approach [1, 2]
- Cells as interacting agents
- Chemokines as molecule concentrations
- Parameters obtained from literature search [4]:

	Human	Mouse
Radius alveolus	116.5 μm	26.2 µm
Area alveolus	$1.3\cdot 10^5\mu m^2$	$6.5\cdot 10^3 \ \mu m^2$
Radius Alveolar Macrophages (AM)	10.6 µm	9.5 μm
Number of AM n_{AM}	$2.1 \cdot 10^{9}$	$2.4 \cdot 10^{6}$
Alveoli in lung	$4.8 \cdot 10^{8}$	$3.3 \cdot 10^{6}$
AECI(II)	45 (84)	4 (4)
Pores of Kohn (PoK)	24	7

Virtual Experiments

- Large-scale experiments: High (up to
- 5000) number of runs per set of

parameters

Measurement:

• Infection Score (IS) – empirical

Realistic to-scale model of the murine (left) and the human alveolus (right) represented as a ³/₄ - Sphere

probability of an infection

• Onset of hyphal growth 6 hours post infection under certain conditions:

#runs with undetected $IS = \frac{conidium \ at \ 6 \ hours}{Total \ \#runs}$

Study about role of Pores of Kohn [3]

Aim: Investigate the role of PoK in human alveolus. Three models were designed to measure significant differences in infection clearance:

- PoK +/+, Chemokines flow out at PoK, AM enter and exit there (standard)
- PoK +/-, Chemokines flow out at PoK, AM cannot enter or exit there
- PoK -/-, PoK serve neither as chemokine outflow nor as AM migration path
- > Determined: $n_{AM} = 4.375$, $n_{Con} = 1$, s_{AEC} and D were scanned

Results: Infection scores of parameter optima for $s_{AEC_{opt}}$ and D_{opt}

- Different parameter optima
- In PoK +/- and PoK -/-, AM

aggregate at entrance ring

- Spatial advantage in PoK +/+
- $IS_{POK+/+} < IS_{POK+/-} = IS_{POK-/-}$
- \rightarrow PoK beneficial for clearance

Infection dynamics for varying numbers of AM

• More than 10 million simulations were performed to observe parameters

Study about infection clearance in human and mouse [4]

Aim: Investigate the differences in infection clearance in human and mouse

Parameter ranges to scan	Human	Mouse
Number of AM n_{AM} per alveolus	2, 4, 6,, 50	0.1, 0.2, 0.3,, 2.5
Number of conidia n_{Con}	1, 2	1, 2, 3
Secretion rate s_{AEC} in $\frac{molecules}{min}$	1500, 5000, 15000, 50000, 150000, 500000	
Diffusion constant <i>D</i> in $\frac{\mu m^2}{min}$	20, 60, 200, 600, 2000, 6000	

Simulation results (human):

Low infection scores for

- High n_{AM}
- Low n_{Con}
- High s_{AEC}
- Low D

Curve properties along n_{AM} :

- Exponential decay $e^{-b n_{AM}}$
- Different shape for $n_{Con} > 1$

 $\rightarrow \mathsf{IS}(n_{AM}) = e^{-b n_{AM}c}$

Fit: Distributions b and c are obtained

- > Determined: Human $n_{AM} = 4.375$, Mouse $n_{AM} = 0.727$, s_{AEC} and D were scanned Results:
- Infection score lower in murine alveolus
- Infections still more efficiently cleared for higher n_{Con} in murine alveolus
- Directed migration of AM more likely in human

Predictions for various infection scenarios in human and mouse

Conclusions for **equal** n_{AM} :

- IS human lower under optimal conditions (high $\frac{S_{AEC}}{D}$)
- IS mouse lower for random walk $(\log \frac{s_{AEC}}{D})$

Surrogate model predicts IS in human and mouse:

Fit analytical functions *f*, *g* to distributions *b* and *c*:

$$\mathsf{IS}\left(n_{AM}, n_{Con}, \frac{s_{AEC}}{D}; \theta_1, \theta_2\right) = e^{-f\left(n_{Con}, \frac{s_{AEC}}{D}; \theta_1\right)} n_{AM}^{g\left(n_{Con}, \frac{s_{AEC}}{D}; \theta_2\right)}$$

for functions f and g and parameter vectors θ_1, θ_2

Outlook:

- Narrow down ranges of parameters (*i. e.* identify min/max n_{AM})
- Hypothesis about importance of parameters for infection clearance

Christoph.Saffer@leibniz-hki.de

www.leibniz-hki.de

References

[1] Pollmächer and Figge. 2014. *PLoS ONE*. 9:10
[2] Pollmächer and Figge. 2015. *Front Microbiol*. 6:1-14
[3] Blickensdorf *et. al.* 2020. *Front Microbiol*. 11:1-13.
[4] Blickensdorf *et. al.* 2019. *Front Immunol*. 10

