

Hybrid agent-based modeling framework to simulate Aspergillus fumigatus infection scenarios in the lung

Christoph Saffer^{1,2}, Sandra Timme¹, Marc Thilo Figge^{1,3}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany ² Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany ³ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany

Motivation

- Opportunistic pathogen *Aspergillus fumigatus*
- Inhalation of hundreds of conidia every day
- Germination within hours
- Hyphal invasion into blood stream
- Life-threatening invasive aspergillosis

Infection scenario events

- Conidium enters alveolus •
- Chemokine secretion by conidium –associated AEC \bullet
- AM perform chemotactic walk along chemokine gradient \bullet
- AM enter and leave system through boundaries \bullet
- Chemokine concentration reaches equilibrium •

- Potential detection and clearance of conidium
- If not cleared: conidium swells and grows hyphae •
- Simulation ends at t_{max} \bullet

Hybrid agent-based model

Modeling infection dynamics of *A. fumigatus* is realized using an agentbased modeling approach [3] combined with partial and ordinary differential equations for modeling the dynamics of chemokines:

- Cells correspond to interacting agents
- Molecules are represented as concentrations distributed over the inner alveolar surface

Chemokine dynamics

Spatio-temporal dynamics of chemokine concentration $c(\vec{r}, t)$ at position \vec{r} and time t is described by the reaction diffusion equation [4]:

$$\frac{\partial c(\vec{r},t)}{\partial t} = D \Delta c(\vec{r},t) - \lambda c(\vec{r},t) + S(\vec{r},t) - Q(\vec{r},t)$$

- *D* isotropic diffusion coefficient
- λ chemokine decay
- $S(\vec{r}, t)$ source associated with the secreting AEC \bullet

Model environment and entities

The to-scale approach involves a 3D representation of the human alveolus as the environment and the entities as shown below:

- $Q(\vec{r},t)$ uptake of chemokines by AM
- Application of Euler method on Delaunay • triangulated surface (5000 grid points)

Modeling hyphal growth

- Highly generic implementation
- Depends on growth rate, branching degree, curvature, etc.
- Piercing branch through membrane orthogonal to surface
- Approximation of hyphae by spheres \bullet
- Growth according to logistic function f(t) \bullet
- At time t, a new sphere is added to the hypha, if length of • hypha l(t) < f(t)

Extension to alveolar sac

- Next higher structural unit in the lung •
- Generation of a set of points and their associated Delaunay triangulated alveolar surface
- Single alveolus is represented as multiple truncated spheres
- Individual alveoli are connected by a central • alveolar airway (cylinder)

Game Theory

- Simulation of infection-inflammation counterplay: of *A. fumigatus* and innate immunity for:
 - Immunocompromised patients •
 - Different infection-doses
- Reconcile contradictory view on alveolar macrophages in literature

Christoph.Saffer@leibniz-hki.de

www.leibniz-hki.de

References

[1] Dagenais and Keller. 2009. Clin Microbiol Rev. 22:447-65 [2] Pollmächer et al. 2016. Sci Rep. 6:27807 [3] Pollmächer and Figge. 2014. *PLoS ONE*. 9:10 [4] Pollmächer and Figge. 2015. *Front Microbiol*. 6:1-14

