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Studies on virtual whole-blood infection assays
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Infection dynamics in healthy individuals and patients

Healthy Individuals:

Experiments: We performed whole-blood infection assays,
where blood from healthy donors is infected with
C. albicans or C. glabrata cells. With phagocytosis assays and
survival plates we determined pathogen populations of alive,
killed, extracellular and phagocytosed cells by monocytes
and neutrophils.

as phagocytosis and killing rates.

Transition rates from SBEM

State-based model: The SBM consists of states and
transitions between these states that resemble the
# biological system. Fitting the SBM to the experimental #
data allowed quantification of immune reaction rates, such
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Virtual Neutropenic Patients (VNP):

We simulated infection dynamics in VNP with different severity degrees of neutropenia by
reducing the number of neutrophils in the ABM. We selected five VNP (see Table) and identified
patterns to characterize the infection outcome that were based on the fraction of killed (Py)
and immune evaded pathogens (Py;z).

Hospital Patients:

We quantified functional parameters of innate immune cells in blood from patients undergoing
cardiac surgery. These patients experience a well-characterized inflammatory insult, which
results in mitigation of the pathogen-specific response patterns towards Staphylococcus
aureusand C. albicans that are characteristic of healthy people and patients.
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Pathogen immune evasion

Whole-blood experiments with blood from healthy donors and patients revealed that a certain fraction of
pathogens remain extracellular. In combination with mathematical modelling we could show that this can only
be explained by pathogen immune evasion (IE). However, as of now the underlying mechanism is not
understood. Therefore, we compared simulations with various possible immune evasion mechanisms in order
to generate hypotheses that allow for targeted
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Agent-based model: To investigate also spatial aspects we
build an ABM, where single cells are simulated in a
continuous three-dimensional environment. Based on the
experimental data and the previously estimated rates we
could determine diffusion coefficients of neutrophils (Dy)
and monocytes (Dy).
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Model for pre-existing |IE could be falsified by
automated image-analysis

Three base models and their combinations

Least-square error (LSE) to measure agreement
with experimental data

Corrected Akaike Information criterion (AIC.) as
measure for model quality with penalty for number
of parameters

More complex models could not compensate for
their penalized complexity by a better agreement
with the experimental data

Model-specific patterns could be derived

Proposal of new experiments that will contribute to
the identification of IE mechanismin the future
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