DN ZHK

Virtual whole-blood infection assays

Sandra Timme¹, Paul Rudolph^{1,2}, Kerstin Hünniger^{3,4}, Oliver Kurzai^{3,4}, Marc Thilo Figge^{1,5}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany ² Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany ³ Fungal Septomics, Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany ⁴ Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany ⁵ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany

Background

Whole-blood infection assays (WBIA)

- Opportunistic human-pathogenic fungi: Candida albicans, C. glabrata
- Enter the bloodstream via the intestinal gut or medical devices (e.g. catheters)

- Cause systemic infections like sepsis in immunocompromised patients
- High mortality rates

[1,2]

Agent-based model (ABM)

[2]

State-based model (SBM)

Parameter Fitting:

- Least-Squares Error (LSE): $LSE = \sum_{i=0}^{n} (\mu_i^{exp} \mu_i^{sim})^2$
- Scheme
- •

Isotropic reaction diffusion equation with cells as source/sink:

$$\frac{dc(\vec{x},t)}{dt} = D \cdot \Delta c(\vec{x},t) - \lambda c(\vec{x},t) + Q(\vec{x},t)$$

periodic boundary condition

• Time discretization using the explicit Euler scheme: $c_{t+1} = Ac_t + Q(c_t)$

- A: three dimensional second order finite difference matrix
- $Q(c_t)$: discretized cell-molecule interaction

• Applications:

- Cytokine secretion of neutrophils
- Ligand-Receptor binding of chemokines
- Complement opsonization of pathogens

sandra.timme@leibniz-hki.de

www.leibniz-hki.de

References

[1] Hünniger *et al.* 2014. *PLOS Comput Biol*. 10:2 [2] Lehnert et al. 2015. Front Microbiol. 6:608

