

Design of an optimal COVID-19 surveillance protocol for child care facilities using an infection spread model

Paul Rudolph^{1,2}, Johannes Forster³, Sandra Timme¹, Johannes G. Liese⁴, Oliver Kurzai³, Marc Thilo Figge^{1,5}

¹Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute Jena, Germany ² Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany ³ Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany ⁴ Department of Pediatrics, University Hospital of Wuerzburg, Wuerzburg, Germany ⁵ Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany

Background

Structure of Model DCC:

- Investigate COVID-19 infection spread in day care centers for children (DCC) during a pandemic
- Negative effects for children are associated with the closure of DCCs
- Clinical studies of DCC during a pandemic are limited
- Design of optimal surveillance protocol needed using computational simulations

Hypothesis: Reopening DCCs while simultaneously providing surveillance testing might be feasible

Head **CCWs N** CCWs 1

Model Structure:

- Model of a DCC consists of three distinct roles:
 - Supervisors (Head)
 - Childcare workers (CCW)
 - Children with/without permission for testing
- Children groups are mostly isolated but can interact via shared rooms (e.g. bathrooms)
- CCWs can interact between CCWs from other groups via a shared common room
- CCWs regularly interact with the head of the DCC
- Intergroup infections are occur more often than intragroup infections

Individual-based model

- Stochastic individual-based model [1] based on a modified SEIR model [5] with states susceptible, infected, quarantined, isolated and immune
- Individuals can move between states governed by transition rates given by [2] and [4]
- Green and red arrows indicate policy-specific and virus-specific transition rates respectively ${}^{\bullet}$

Viral load and infection transmission

- Infection spread between individuals (in red) is modeled using a **transmission risk** calculator [3] based on the current viral load given by a viral load kinetic model [2]
- The **viral load kinetic model** [2,4] is given by a piecewise linear function, which depends on the age and is different for asymptomatic and symptomatic infected

Results

Parameters:

- 400 000 simulation with a duration of 30 days
- Children are on average 8 hours together in the DCC
- Infection risk parameters from aerosol transmission from [3]

Quarantine Policies:

- Regular: Whole group goes into quarantine if one positive test
- Limited: Only individuals with a positive result are isolated

Measurement: Average number of secondary infections (ASI)

Surveillance Test:

- Test type: PCR test
- Limit of detection: 1000 viral copies per ml
- Time until test result is available: 12 hours

Screening:

- Test frequency
- Children participation rate

Monday is an optimal test day

Conclusion

- Not much difference between three times testing and daily testing (Mo-Fr) •
- Infected CCWs cause more secondary infections than infected children due to higher viral loads and infection spread
- Limited quarantine policy is a feasible strategy for a t least 50 % children participation and two times testing per week
- PCR testing is only feasible with a short waiting time

www.leibniz-hki.de

References

[1] Timme et al. 2018 Front Immunol.9 [2] Larremore *et al.* 2021 *Sci Adv.* 7:1 [3] Lelieveld et al. 2020 Int J Environ Res Public Health. 17:21 [4] Jones *et al. 2021 Science.* 373 [5] Groendyke *et al.* 2021 *Epidemiol Met.* 10:1

paul.rudolph@leibniz-hki.de

