EBN

Automated Characterization of Neutrophil Activation Phenotypes for Human Candida Bloodstream Infections

Ivan Belyaev^{1,2}, Alessandra Marolda^{2,3}, Jan-Philipp Praetorius^{1,2}, Anna Medyukhina^{1,4}, Kerstin Hünniger³, Oliver Kurzai^{3,5,6}, Marc Thilo Figge^{1,7}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany

- ² Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- ³ Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute, Jena, Germany
- ⁴ Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN
- ⁵ Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- ⁶ Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- ⁷ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany

Objectives

We hypothesize that polymorphonuclear neutrophils (PMN) after confrontation with fungal pathogens may exhibit a characteristic behavior in terms of cell morphology that allows (i) identifying the type of pathogen indirectly and (ii) providing information on therapeutic efficacy. In this feasibility study, we propose a method for the quantitative assessment of static and morphodynamic features of PMN based on label-free time-lapse imaging data from a human whole blood infection (WBI) assay with *C. albicans* and *C. glabrata* as the major causes of candidaemia.

Ex vivo human whole-blood infection assay, **PMN isolation and live-cell imaging**

N/S-morphology detection

Cell population as a mixture distribution: $M = [1 - \mu]N + \mu S$, where $0 \le \mu < 1$ – the fraction of cells with *S*-morphology, for mock-infection $\mu \ll 1$.

(I) Pipeline of *ex vivo* WBI assay [1] followed by live-cell imaging (II) Examples of single frames for mock-infected (left) and infected (right) samples (III) Example of dynamic PMN morphology change during 10 consecutive frames: PMN develops into spreading state (*S-morphology*) and back (*N-morphology*)

Data-driven Soft Independent Modelling of Class Analogy

(I) PCA and objects characterization

x_i – an initial variable - a calibration data point PC_1 – the 1st principal component - the centre of the PC model – new data point projection to PC model $h^{1/2}$ – score distance $v^{1/2}$ – orthogonal distance

Results

(II) Outliers detection :

$$O_{\gamma} = \left\{ (h, v): N_h \frac{h}{h_0} + N_v \frac{v}{v_0} > \chi^{-2} ((1 - \gamma)^{1/I}, N_h + N_v) \right\}$$

(III) Class acceptance rule:

$$H_{\alpha} = \left\{ (h, v): \ N_{h} \frac{h}{h_{0}} + N_{v} \frac{v}{v_{0}} \le \chi^{-2} (1 - \alpha, N_{h} + N_{v}) \right\}$$

 h_0 , v_0 , N_h , N_v – parameters of SD and OD distributions α – probability of type I errors in decision making γ – outliers significance level *I* – number of samples

Estimation of SD and OD distribution parameters:

$$\begin{cases} M = \frac{u_0}{N} \chi^{-2}(0.5, N) \\ S = \frac{u_0}{N} [\chi^{-2}(0.75, N) - \chi^{-2}(0.25, N)] \end{cases} \quad \left| (N, u_0) \in \begin{cases} (N_h, h_0), \\ (N_v, v_0) \end{cases} \right|$$

M, *S* – median and interguartile range of calibration data

Visual observations from time-lapse microscopy videos:

• PMN morphology in the spreading state rarely present in mock-infected samples • PMN spreading episodes for *C. albicans* infection scenarios are typically shorter than for PMN from infection scenarios with *C. glabrata*

Automated single PMN and population analysis

^(a) Segmentation and tracking by our software AMIT [2, 3, 4, 5]

Fraction of PMN with S-morphology exhibits differences between infection scenarios (II) Identification of videos from mock-infected samples with 100% accuracy in experiments

^(b) Cell characterization via footprint area and percentiles of gradient amplitude distribution ^(c)Classification with Data-driven Soft Independent Modelling of Class Analogy [6] ^(d) Using a naïve Bayesian classifier based on fraction of PMN with S-morphology ^(e) Based on majority voting for classes mock / *C. albicans* / *C. glabrata* ^(f) Total time PMN spend in S-mode and maximal duration of spreading episodes for a PMN ^(g) Bayesian classifier (in case of two descriptors a naïve Bayesian classifier was used) ^(h) Fraction of PMN likely to follow either *C. albicans*- or *C. glabrata*-specific statistics ⁽ⁱ⁾ Based on dominant class for individual PMN

- with leave-one-out cross-validation (LOOCV) sampling
- (III) PNM tend remaining longer time in S-mode after confrontation with *C. glabrata* compared to *C. albicans*

(IV) Maximal duration of single episode in S-mode is longer for PMN confronted *C. glabrata*

- (V) Identification of videos from *C. albicans*-infected samples with 100% accuracy using morphodynamic descriptors in experiments with LOOCV sampling
- (VI) Existence of pathogen-specific morphodynamic needs to be confirmed through further experiments with larger donor cohort of ~ 10³ participants

www.leibniz-hki.de

ivan.belyaev@leibniz-hki.de

References

¹Hünniger *et al.* 2014. *PLoS Comput Biol.* 10(2):e1003479 ² Brandes *et al.* 2015. *Med Image Anal* 20:34-51 ³ Brandes *et al.* 2017. *Med Image Anal* 36:172-183 ⁴ Al-Zaben et al. 2019. *Sci Rep* 9:3317 ⁵ Belyaev *et al.* 2021. *Cytom Part A.* cyto.a.24466 ⁶ Pomerantsev and Rodionova. 2014. *J Chemom*. 28(5): 429–438

