EBN ZHK

A spatio-temporal model for simulating hyphal growth of filamentous fungal species

Christoph Saffer^{1,2}, **Marc Thilo Figge**^{1,3}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany ² Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany ³ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany ⁴ Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany ⁵ Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany ⁶ Institute for Biochemistry II, University Hospital Jena, Jena, Germany

Motivation

- Hyphal growth is characteristic for pathogenic fungus
- Growth of filamentous fungal species varies between different • species and conditions
- Immune system struggles in efficiently clearing expanded fungus
- Co- and superinfections with pathogenic fungus is increasing risk
- Decoding hyphal growth is crucial for fungal infection research

Aspergillus fumigatus

Candida albicans (Gut-on-Chip)

and potentially supports treatment developments for inhibiting pathogenic expansion

Image provided by Katarina Jojic^{2,4}

Image provided by Marisa Valentine^{2,5}

Image provided by Manuel Allwang^{2,6}

Spatio-temporal model for simulating hyphal growth

Modeling hyphal growth of fungal species is realized using a spatio-temporal model based on a previously developed agent-based approach [1, 2].

Recursive algorithm

Single hyphal branches are represented as a list of intersecting spheres with a position and radius.

A function grow(), called for each branch in each timestep, is central for recursive expansion of hyphae. Schematic algorithm:

hyphalBranch.grow(time):

updateLength(time)

- if (MinOverlap && CollisionHandling()) newSphere()
- if (length > threshold1) newDirection()

if (length > threshold2) branches.push(newBranch()) updateThresholds(time)

for time in timeSteps: for hyphalBranch in branches: hyphalBranch.grow(time)

ODE for length of branches

Based on logistic growth [3, 4] combined with a degrading nutrition supply for hyphal tips:

$$\frac{dL}{dt} = \left(k_1 + k_2\left(\frac{L}{satL + L}\right)\right) * decNutr(L)$$

 k_1 : Growth rate at tip

 k_2 : Growth rate of branch

satL: Saturation level for length

decNutr: Decaying nutrition supply depending on L

Branches and curvature

A branch/curve is generated with deviation angles α rotating around the initial growth direction after a threshold distance μ .

Collision handling

Before a new sphere is created, it is checked whether there is already an object located:

- Go over or under existing hyphae
- Keep initial growth direction

Environments

- Growth in 2D and 3D space
- Growth on a sphere (alveolus model)

- The *length* for each branch is modelled by an ODE
- *MinOverlap* depends on distance between spheres
- *Thresholds* depend on probability distributions

 α , μ are drawn from normal distributions:

Applications and outlook

Validation of measurement methods for 2D images

Bottom-up image anylsis methods can be tested on simulated data against provided ground truth:

- Distance between branches
- Branching and curvature angles
- Crossing information

Examples:

• Branching angles: 90 degrees; Thin hyphae

Generation of 3D image stacks for microcolonies

Microcolonies are a dense network of hyphae originating from several fungal cells, which must therefore be analysed with top-down approaches and viewed in three dimensions.

Volume, sphericity, elongation of microcolony

Image stack along z-axis

- Intersection of microcolony with cubiod per image
- Distance of $1\mu m$ between image layers

Data generation for deep learning

The bottle necks of image-based deep learning algorithms are the

- Lack of a sufficient number of images
- Lack of annotated images
- → With data generating models, thousands of images in various conditions including ground truth can be created within days

Potential usages:

- Assignment of branches to yeast cell / conidia
- Classification of fungal species

- Branching angles: 40 degrees; Thick hyphae

Outlook

- Use deep learning approaches to enhance authenticity of generated images
- Add relevant hyphae-agent interactions to model immune response against fungal structures
- Use sophisticated visualisation tools

Christoph.Saffer@leibniz-hki.de

www.leibniz-hki.de

References

^[1] Pollmächer, Figge (2014) *PLoS ONE*, 9(10) ^[2] Pollmächer, Figge (2015) *Front Microbiol*, 6, 1–14 ^[3] Lejeune *et. al.* (1995) *Biotechnol Bioeng*, 47:609-615 ^[4] Lejeune *et. al.* (1996) *Biotechnol Bioeng*, 53:139-50

