

Spatial distancing: Investigation of a defense mechanism for pathogen immune evasion

Yann Bachelot^{1,2}, Paul Rudolph^{1,2}, Sandra Timme¹, Anastasia Solomatina¹, Marc Thilo Figge^{1,3}

- ¹Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Jena, Germany
- ² Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
- ³ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany

Abstract

- Some pathogens, such as Candida albicans, can evade the immune system and survive in the host during infections. However, such mechanisms are not yet unraveled
- In this study we investigate and simulate a possible immune evasive mechanism referred to as spatial distancing: microbial pathogens secrete defensive molecules that bind to antimicrobial peptides and diffuse away from the cell due to molecular gradient
- 2 different modeling techniques were used: Partial Differential Equations and Agent-Based Modeling
- Results suggest spatial distancing as an effective way for microbial pathogens to escape the immune system

Parameter

 S_D

 U_A

 D_A

 D_D

- Immune system: a barrier against pathogens during infections
 - Extracellular killing via antimicrobial peptides (AMPs)
 - Phagocytosis with labeling via opsonins

Biological evidence

• *C. albicans* can escape the immune system

Mechanism

Agent-Based Modeling approach

- **Environment:** 3-dimensional, continuous
- Molecules: single agents performing Brownian motion
- Suited for low concentrations: formations of complexes are rare events

• Downscaled system with factor 10^{-3}

Time-resolved spatial distributions of molecules

- Secretion of defensive molecules at the cell surface
- Formation of complex
- Concentration of AMPs lowered in the vicinity of the cell

Partial Differential Equation model

- Environment: 3-dimensional, continuous
- Molecules: concentrations diffusing on a discrete grid according to the gradient
- Suited for high concentrations: formations of complexes are frequent events

$$\frac{\partial[A]}{\partial t} = D_A \nabla^2[A] + K_{off}[C] - K_{on}[A][D] - K_{deg}^A[A]$$

Defensive molecule

$$\frac{\partial [D]}{\partial t} = D_D \nabla^2 [D] + K_{off}[C] - K_{on}[A][D] - K_{deg}^D[D]$$

Complex

$$\frac{\partial[C]}{\partial t} = D_C \nabla^2[C] + K_{on}[A][D] - K_{off}[C]$$

Diffusion coefficient of complex $\mu m^2 s^{-1}$ $D_{\mathcal{C}}$ K_{deg}^{A} Degradation rate of AMP K_{deg}^{D} Degradation rate of defensive molecule Association rate [AMP – Defensive molecule] $\mu m^3 s^{-1}$ K_{on} K_{off} Dissociation rate [AMP – Defensive molecule] s^{-1}

Description

Diffusion coefficient of defensive molecule

Secretion rate of defensive molecule

Uptake rate of AMP

Diffusion coefficient of AMP

Unit

 $\mu m^{-3} s^{-1}$

 $\mu m^2 s^{-1}$

 $\mu m^2 s^{-1}$

Initial condition	Description	Unit
$[A]_{t=0}$	Concentration of AMP	μm^{-3}

Time-resolved spatial distributions of molecules

Parameter screening

Boundary conditions

- At the cube limit: periodic boundaries
- At the cell surface: reflective boundaries

$$\frac{\partial [A]}{\partial x}\Big|_{memb} = 0, \quad \frac{\partial [D]}{\partial x}\Big|_{memb} = 0, \quad \frac{\partial [C]}{\partial x}\Big|_{memb} = 0$$

$$\frac{\partial [A]}{\partial t}\Big|_{x=memb} = -U_A[A]_{memb}$$

$$\frac{\partial [D]}{\partial t}\Big|_{x=memb} = S_D$$

$$Score = \frac{A_{uptaken}}{A_{total}} \cdot 100$$

- High S_D and low K_{off} rates lead to a reduction in the uptake of AMPs by the pathogenic cell
- Beneficial regime for the pathogenic cell with a wide range of parameter combinations

Conclusion

- Secretion of molecules by the pathogenic cell reduces the concentration of AMPs in the vicinity of the microbial cell
- Both PDE and ABM approaches show qualitatively similar dynamics, suggesting spatial distancing as an effective immune evasion mechanism
- **Inhibition** of **molecules secreted by pathogens** in defense against AMPs could be a target for therapeutic interventions
- **Experimental validation:**
 - Binding assays between **LL37** (AMP) and **Msb2** (secreted by *C. albicans*)² show high affinity between both molecules

yann.bachelot@leibniz-hki.de

www.leibniz-hki.de

References

¹ Hünniger, K. et al. 2014. PLoS Computational Biology. 10:e1003479

² Swidergall, M. et al. 2013. American Society for Microbiology.57:3917-3922

GEFÖRDERT VOM