

Spatial distancing: Modeling of a defense mechanism for pathogen immune evasion

Yann Bachelot^{1,2}, Anastasia Solomatina¹, Paul Rudolph^{1,2}, Sandra Timme¹, Marc Thilo Figge^{1,3}

- ¹Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Jena, Germany
- ² Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
- ³ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany

Abstract

- Some **pathogens**, such as *Candida albicans*, can **evade** the **immune system** and **survive** in the host during **infections**. However, such mechanisms are not yet unraveled.
- In this study, we **investigate** and **simulate** a possible **immune evasive mechanism** referred to as **spatial distancing**: microbial pathogens secrete **defensive molecules** that **bind** to **antimicrobial peptides** and **diffuse away** from the cell due to molecular gradient.
- Two different modeling approaches were used, Partial Differential Equations and Agent-Based Modeling, both suggesting spatial distancing as an effective way for microbes to escape the immune system.

Mechanism Cell Cell Antimicrobial peptide Defensive molecule Complex → ← ← ←

Biological evidence

- *C. albicans* can escape the immune system by protecting itself from AMPs via secretion of Msb2*.
- Figure shows colony forming units (CFU) of *C. albicans* after incubation with human AMP LL37 and in the presence/absence of Msb2*. [1]

Agent-Based Modeling approach

- Environment: 3-dimensional, continuous
- Molecules: single agents performing Brownian motion
- Suited for low concentrations: formations of complexes are rare events

• Downscaled system with factor 10^{-3}

Spatiotemporal distributions of molecules

- Secretion of defensive molecules at the cell surface
- Formation of complex
- Concentration of AMPs lowered in the vicinity of the pathogenic cell

Partial Differential Equation model

- Environment: 3-dimensional, continuous
- **Molecules:** concentrations diffusing on a discrete grid according to the gradient
- Suited for high concentrations: formations of complexes are frequent events

AMP

$$\frac{\partial [A]}{\partial t} = D_A \nabla^2 [A] + K_{off}[C] - K_{on}[A][D] - K_{deg}^A [A]$$

Defensive molecule

$$\frac{\partial[D]}{\partial t} = D_D \nabla^2[D] + K_{off}[C] - K_{on}[A][D] - K_{deg}^D[D]$$

Complex

$$\frac{\partial[C]}{\partial t} = D_C \nabla^2[C] + K_{on}[A][D] - K_{off}[C]$$

Spatiotemporal distributions of molecules

Parameter screening

Parameter	Description	Unit
S_D	Secretion rate of defensive molecule	$\mu m^{-3} s^{-1}$
U_A	Uptake rate of AMP	s^{-1}
D_A	Diffusion coefficient of AMP	$\mu m^2 s^{-1}$
D_D	Diffusion coefficient of defensive molecule	$\mu m^2 s^{-1}$
D_{C}	Diffusion coefficient of complex	$\mu m^2 s^{-1}$
K_{deg}^{A}	Degradation rate of AMP	s^{-1}
K_{deg}^{D}	Degradation rate of defensive molecule	s^{-1}
K_{on}	Association rate [AMP – Defensive molecule]	$\mu m^3 s^{-1}$
K_{off}	Dissociation rate [AMP – Defensive molecule]	s^{-1}

Initial condition	Description	Unit
$[A]_{t=0}$	Concentration of AMP	μm^{-3}

Boundary conditions

- At the cube limit: periodic boundaries
- At the cell surface: reflective boundaries

$$\frac{\partial[A]}{\partial x}\Big|_{surf} = 0, \quad \frac{\partial[D]}{\partial x}\Big|_{surf} = 0, \quad \frac{\partial[C]}{\partial x}\Big|_{surf} = 0$$

$$\frac{\partial[A]}{\partial t}\Big|_{x=surf} = -U_A[A]_{surf}$$

$$\frac{\partial[D]}{\partial t}\Big|_{x=surf} = S_D$$

$$Score = \frac{A_{uptaken}}{A_{total}} \cdot 100$$

- High S_D and K_{on} rates lead to a reduction in the uptake of AMPs by the pathogenic cell
- Beneficial regime for the pathogenic cell with a wide range of parameter combinations

Model extension

Two pathogenic cells

Multi-binding sites on defensive molecules

Surrogate model

- Training of an ML model (Light Gradient Boosting Machine) on simulations from screening
- Prediction of score based on simulations' input parameters

Conclusion

- Secretion of molecules by the pathogenic cell reduces the concentration of AMPs in the vicinity of the microbial cell.
- Extended models including **two pathogens** and the **binding** of **multiple AMPs** by one defensive molecule induce **stronger survival chances** for the microbe.
- Both PDE and ABM approaches show qualitatively similar dynamics, suggesting spatial distancing as an effective immune evasion mechanism.
- Inhibition of molecules secreted by pathogens in defense against AMPs could be a target for therapeutic interventions.

yann.bachelot@leibniz-hki.de

References

www.leibniz-hki.de

