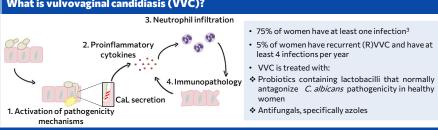
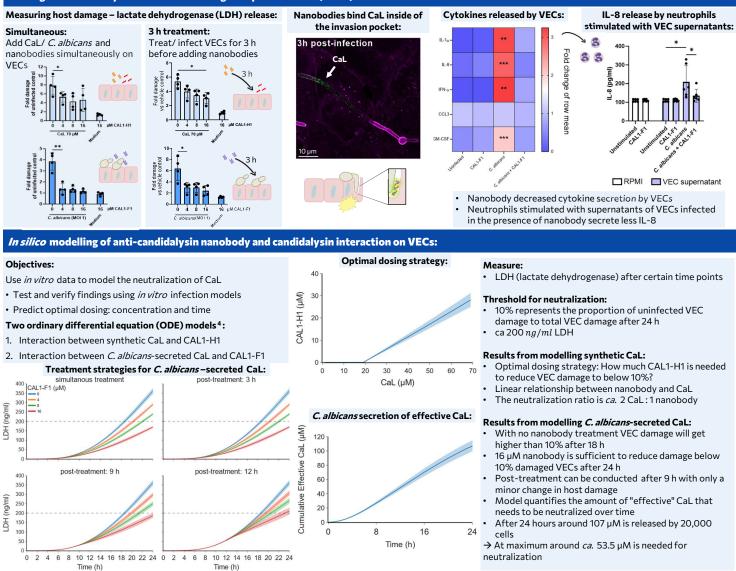


Neutralization of the Candida albicans toxin, candidalysin, blocks epithelial damage and dampens inflammatory responses associated with vulvovaginal candidiasis immunopathogenesis


Marisa Valentine¹, Paul Rudolph², Axel Dietschmann³, Selene Mogavero¹, Antrela Tsavou⁴, Jemima Ho⁴, Sejeong Lee⁴, Emily L. Priest⁴, Gaukhar Zhurgenbayeva⁵, Sandra Timme², Christian Eggeling⁵, Stefanie Allert¹, Edward Dolk⁶, Julian R. Naglik⁴, Marc T. Figge^{2,7}, Mark S. Gresnigt⁵, Bernhard Hube^{1,7}

¹ Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
² Department of Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
³ Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
⁴ Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom.
⁹ Institute of Applied Optics and Biophysics, Fredrich Schiller University, Jena, Germany.
⁹ QVQ BV, Utrecht, The Netherlands.
⁹ Optice Interactions, Faculty Long, Germany. ⁷ Institute for Microbiology, Friedrich Schiller University, Jena, Germany.


Abstract:

The fungus *Candida albicans* is typically a harmless member of the human microbiota, but can cause vulvovaginal candidiasis (VVC)¹. *C. albicans* secretes a toxin candidalysin (CaL), which causes host damage and elicits an immune response². However during VVC, recruited neutrophils exacerbate inflammation leading to symptoms. Unknown causes of infection, recurrence, and antifungal resistance complicate VVC treatment³. Therefore, as a therapeutic strategy, we evaluated using nanobodies to neutralize candidalysin to prevent epithelial damage and hyperinflammation.

Testing anti-candidalysin nanobodies on vaginal epithelial cells (VECs):

Conclusion & Outlook:

• Anti-candidalysin nanobodies neutralize candidalysin, thereby inhibiting VEC damage and subsequent immune responses that drive VVC pathogenesis

paul.rudolph@leibniz-hki.de

- By combining in vitro data with in silico modelling, we provide a preclinical proof-of-principle
- Forms the basis for future development and application of anti-candidalysin nanobodies as VVC treatment in vivo

References [1] Rosati *et al.* 2020 *Microorganisms* [1] Kosati et al. 2020 Microorganisms
[2] Yano et al. 2018 Infect Immun
[3] Sobel 2007 Lancet
[4] Mech et al. 2014 Cytometry Part A

www.leibniz-hki.de