ZHK

Virtual Phagocytosis Assays – From Observations via Quantifications to Mechanisms

Sandra Timme¹, Jan-Philipp Praetorius¹, Mohamed Hassan², Kerstin Voigt^{3,4}, ZoltánCseresnyés¹, and Marc Thilo Figge^{1,3}

¹ Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany ² inspire lab, Institute for Biochemistry, Jena University Hospital, Jena, Germany ³ Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany ⁴ Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany

Phagocytosis Assays

- Commonly used in infection research
- Comparison of various conditions like:
 - Capability of immune cells to phagocytose different strains/mutants
 - Efficiency of vaccines
 - Various factors that activate immune cells
- Characterization via phagocytosis measures

Example: Aspergillus fumigatus Lung Infections

- Ubiquitous human-pathogenic fungus
- Small spores (conidia) distributed via the air:
 - Inhalation of several hundred per day
 - Phagocytosis by alveolar macrophages (AM)
- Immunocompromised patients:
 - Severe infections like aspergillosis
 - Mortality rates: 30 90%

Phagocytosis Measures: Relative Endpoint Measures

For 2 independent experiments *E* and *E*':

Limitations:

- No process measures
- Population-based measures
- Can give contradictory results
- Are not unique

0.0-	
0.0	0.5 1.0 1.5 2.0 Q/p
λ7	# macrophages
IVm	# macrophages
N_m^{phag}	<pre># phagocytosing macrophages</pre>
$N_c^{total} = N_c^{adh} + N_c^{phag}$	# macrophage-associated conidia
N_c^{adh}	# adherent conidia
N_c^{phag}	#phagocytosed conidia
N_c^{free}	# non-associated conidia

E 1.0-

Microscopy & Image Analysis

Inhalation of airborne conidia

Fluorescence microscopy:

- Co-incubation: AM and *A. fumigatus* for 1 h
- Two *A. fumigatus* strains: ATCC, CEA10
- Differential staining

Analysis of endpoint images [1,2]

- Segmentation using CellPose [3]
- Cluster splitting: Watershed algorithm
- Classification based on morphology and color

Analysis of live cell imaging

- Segmentation using CellPose [3]
- Tracking using AMIT [4]

- non-phagocytosed conidia
 - after incubation: calcofluor white staining

Virtual Phagocytosis Assays (VPA): Absolute Process Measures

C++ simulation framework CellRain:

- Monte-Carlo simulations on endpoint images
- Parameter estimation via grid-based approach
- Generalized framework adaptable to other systems •

Monte-Carlo simulations:

- Individual-based model
- Events modelled in a rule-based fashion •
- Event rates = absolute process measures

Simulation framework allows to:

- Estimate absolute process measures
- Perform *in silico* experiments
- Generate artificial images

Output 🛑 Exp 1 🛑 Exp 2

Aims of the study:

1. Estimate microscopic parameters (*e.g.* phagocytosis probability)

ATCC

📥 CEA10

- 2. Resolve ambiguities of phagocytosis measures
- **3.** Assist in experimental design (*e.g.* number of images required)

phagocytosis measure

Results: Estimation of absolute process measures

Simulation

• Absolute process measures can be obtained from VPA

Results: Comparison of ATCC with *in silico* twin

- Generation of *in silico* data set with: m = 1 and a = p = 0.5

CellRain

- Outlook
- Augment macrophage images to:

- Number of phagocytosed and adherent 100conidia different but equal phagocytosis measures
- VPA can identify significant differences in the absolute process measures

- Compare *in silico* twins with $m \neq 1$
- Assist in experimental design: *e.g.* required number of images
- Apply to other pathogens/ immune cell types

sandra.timme@leibniz-hki.de

www.leibniz-hki.de

References

[1] Kraibooj et al. (2015) Front Microbiol [2] Cseresnyes et al. (2018) Cytometry A [3] Stringer *et al.* (2021) *Nat Methods* [4] Belyaev, Praetorius et al. (2021) Cytometry A

