

Virtual Phagocytosis Assays Resolve Ambiguities in Traditional Phagocytosis Measurements

Jana Wilms^{1,2}, Sandra Timme¹, Simranpreet Kaur^{3,4}, Mohamed Hassan⁵, Zoltán Cseresnyés¹, Kerstin Voigt^{3,4}, Marc Thilo Figge^{1,4}

- ¹ Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
- ² Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- ³ Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
- ⁴ Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- ⁵ Inspire lab, Institute of Biochemistry II, Jena University Hospital, Jena, Germany

Fungal Infections

Lichtheimia corymbifera

- Ubiquitous soilborne zygomycete fungus
- Opportunistic human pathogen in immunocompromised patients
- Can cause life-threatening diseases (e.g. mucormycosis)

Aspergillus fumigatus

- Ubiquitous mold
- Opportunistic pathogen with mortality rates up to 90% in immunocompromised patients
- Can cause life-threatening invasive aspergillosis

Phagocytosis Assays

- Used to study the phagocytic ability of macrophages
- Enable comparison of various conditions
- Characterized via phagocytosis measures:

Mathematical

Modeling

Model step 1

Co-incubation

phagocytosis

adherence

 $\eta = 1 - (a + \varphi)$

non-associated

Limitations of Phagocytosis Measures

- i. Do not provide microscopic parameters
- ii. Are not unique
- iii. Can give contradictory results

Goals of the Study

- Estimate microscopic parameters
- Resolve ambiguities of phagocytosis measures
- Assist in experimental design (e.g. determine) the number of macrophages or images required)

Experimental Setup

- Co-incubation:
- Macrophages incubated with either A. fumigatus or L. corymbifera for one hour
- Multiplicity of infection: 1, 3 or 5
- Label:
 - Green fluorescent protein (GFP) for Aspergillus fumigatus GnoA-eGFP
 - Calcofluor-white (CFW) for Lichtheimia corymbifera 9682
 - CytoPainter DeepRed for macrophages

Experiments

Image

Analysis

Analysis of Endpoint Images

- Segmentation: JIPipe [4] and CellPose [5]
- Cluster splitting: Watershed algorithm

Analysis of Live Cell Imaging

- Segmentation: JIPipe [4] and CellPose [5]
- Mask and segment spores and macrophages: Imaris [6]
 - Classification of spores to distinguish associated, non-associated, and phagocytosed conidia
- Tracking: TrackMate [7]
- Quantify observed area of macrophages

Microscopy

Endpoint images and live-cell imaging with spinning disc confocal microscope

Virtual Phagocytosis Assays

Input

- Quantifications, e.g. cell counts and size distributions
- Binary macophage images with observed macrophage areas
- Multiplicity of infection

Simulations and Parameter Estimation

- Monte-carlo simulations Individual-based model
- Event rates = absolute process measures
- Conidia uniformly distributed using multiplicity of infection from experiments

Output

• Optimal parameter set of absolute process measures φ , α , η and ω

Parameter Estimation For each parameter set $(\varphi, \alpha, \omega) \in (0,1)$ Perform n simulations for each image i Calculate Least-Squared-Error (LSE) $LSE = (C_p^{exp} - C_p^{sim})^2 + (C_a^{exp} - C_a^{sim})^2 + (C_{na}^{exp} - C_{na}^{sim})^2 + (M_p^{exp} - M_p^{sim})^2$ Optimal parameter set for each image $P_i^{opt} = (\varphi, \alpha, \omega)$ Calculate average parameter set over all P_i^{opt}

Framework Allows to

- Estimate absolute process measures to resolve ambiguities of phagocytosis measures
- Perform and generate in silico experiments
- Assist in experimental design

Outlook

- Complete analysis with newly performed experiments
- Assist in experimental design, e.g. for providing the required number of images
- Investigate the macrophage phagocytosing behaviour, e.g. saturation or activation of macrophages

Jana.Wilms@leibniz-hki.de

www.leibniz-hki.de

References

[1] Mech et al. 2011, PloS One 6:e19591

[2] Sano et al. 2003, J. Clin. Invest 112, 389-397 [3] Kraibooj et al. 2014, Frontiers in Microbiology 6

[4] Gerst et al. 2023, Nat Methods 20, 168-169

[5] Stringer et al. 2021, Nat Methods 18(1), 100-106 [6] Imaris software, Oxford Instruments

[7] Tinevez et al. 2017, Methods 115, 80–90

Moterials Microbes Microenvironments

