Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the advanced-post-block domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/wordpress/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the lazy-blocks domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/wordpress/wp-includes/functions.php on line 6114
Analysis of HDACi-coupled Nanoparticles: Opportunities and challenges. – Applied Systems Biology – HKI Jena

Analysis of HDACi-coupled Nanoparticles: Opportunities and challenges.

Kühne M, Hofmann S, Lindemann H, Cseresnyés Z, Dzierza A, Schröder D, Godmann M, Koschella A, Eggeling C, Fischer D, Figge MT, Heinze T, Heinzel T

Abstract

Systemic administration of histone deacetylase inhibitors (HDACi), like valproic acid (VPA), is often associated with rapid drug metabolization and untargeted tissue distribution. This requires high-dose application that can lead to unintended side effects. Hence, drug carrier systems such as nanoparticles (NPs) are developed to circumvent these disadvantages by enhancing serum half-life as well as organ specificity.

This chapter gives a summary of the biological characterization of HDACi-coupled NPs in vitro, including investigation of cellular uptake, biocompatibility, as well as intracellular drug release and activity. Suitable methods, opportunities, and challenges will be discussed to provide general guidelines for the analysis of HDACi drug carrier systems with a special focus on recently developed cellulose-based VPA-coupled NPs.

Related projects

12319 Next